FINITE ELEMENT IN ENGINE


We present micromechanical finite element results that quantify coalescence effects based upon temperature and different spatial arrangements of voids. We propose a critical intervoid ligament distance (ILD) to define void coalescence that is derived from micromechanical simulations in which void volume fraction evolves as a function of strain. Several parameters were varied using the temperature and strain rate internal variable plasticity model of Bammann–Chiesa–Johnson to determine the coalescence effects. The parameters include two types of materials with different work hardening rates (304L stainless steel and 6061T6 aluminum), three different temperatures (298, 400, and 600 K), several boundary conditions (force and displacement: uniaxial, plane strain, and biaxial), type of element used (plane strain and axisymmetric), different ILDs, and the number of voids (one and two void configurations). The present study provides a basis for macroscale modeling of coalescence which is briefly discussed.

Hiç yorum yok:

Yorum Gönder